PLANNING FOR SEA LEVEL RISE ON YOUR ROADS

This fact sheet aims to provide municipal leaders and practitioners with a survey of Warren’s transportation infrastructure elements that may be affected by sea level rise and storm surge. In addition to explaining and presenting the data, this fact sheet will outline strategies that may help in adapting to these conditions, and point towards resources that will enable further investigation.

Relevance

The impacts of Sea Level Rise (SLR) are often perceived as distant, but the assets being built today will still be within their design life when future effects of sea level rise are felt. In addition, sea level rise will magnify the impacts of 100-year storm surge events by raising the water level. Though current federal guidelines only require federally funded assets be built to survive a 100-year storm event, what the impact of a 100-year storm event entails is likely to change during the design life of the assets currently under consideration around Rhode Island.

Data and Methodology

To help Rhode Island’s cities and towns prepare for these changing conditions, the Statewide Planning Program (SPP) has engaged in an effort to analyze the potential impacts created by the sea level rise and storm surge. Using data developed under the name “STORMTOOLS” by the Coastal Resources Management Council and the University of Rhode Island, SPP identified the assets that could be impacted (exposure), and their vulnerability. As a result of this analysis, SPP identified the roads and bridges most likely to be impacted by Sea Level Rise, and scored their relative vulnerability based on the severity of the hazard they faced and the potential impact of asset damage on the transportation system as a whole.
Given seven feet of sea level rise, a total of 156 miles of road in Rhode Island could be exposed to inundation, 70% of which would occur on local roads. For Warren six miles of roadway inundation can be expected. Of this, 71% (4.30 miles) are local. Warren’s roads (state and local) are the tenth most vulnerable in the state of Rhode Island to sea level rise.
Given seven feet of sea level rise, a total of 90 bridges in Rhode Island cause concern either due to potential freeboard height or accessibility problems. In Warren there are two bridges of concern. Warren’s bridge infrastructure is the 13th most vulnerable in the state of Rhode Island to sea level rise.
Given seven feet of sea level rise and a 100-year storm surge event, a total of 573 miles of road in Rhode Island will potentially be exposed to inundation, 73% of which will occur on local roads. For Warren, 23 miles of roadway inundation can be expected, 70% (~16 miles) of which are local. Warren’s roads are the ninth most vulnerable in the state of Rhode Island to storm surge.
Given seven feet of sea level rise plus a 100-year storm surge event, a total of 148 bridges statewide cause concern either because of potential free-board height or accessibility problems. In Warren there are two bridges of concern. Warren’s bridge infrastructure is the 16th most vulnerable to storm surge in the state of Rhode Island.

Figure 9

Figure 10

<table>
<thead>
<tr>
<th>Mun. Rank</th>
<th>Bridge Name</th>
<th>Facility Carried</th>
<th>Feature Intersected</th>
<th>Inches of Freeboard Relative to 7FSLR</th>
<th>Terrain Crossed</th>
<th>Landing Access</th>
<th>Intermodal Facility</th>
<th>Evac. Route</th>
<th>AADT</th>
<th>Vuln. Score</th>
<th>State Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Belchers Cove</td>
<td>MARKET ST</td>
<td>BELCHERS COVE</td>
<td>-194</td>
<td>Water Problem</td>
<td>No</td>
<td>Yes</td>
<td>10,000</td>
<td>7.30</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Kickamuit</td>
<td>RI 103 CHILD ST</td>
<td>KICKAMUIT R</td>
<td>-172</td>
<td>Water Problem</td>
<td>No</td>
<td>Yes</td>
<td>7,800</td>
<td>7.30</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>
Warren, RI

Next Steps

Given the potential scale of the impacts of sea level rise and storm surge on local transportation infrastructure, local communities will need to find a way to prepare. A variety of approaches are available, and programs exist to help communities execute these strategies. Finding preparedness strategies will require undertaking further analysis, formulating a clear adaptation strategy, and then taking advantage of planning opportunities that may present themselves.

Further Analysis

The most important step is the pursuit of further analysis. The data contained in this factsheet serves as introduction to municipal level transportation issues associated with sea level rise and storm surge. The data contained here and in Technical Paper #167: Vulnerability of Municipal Transportation Assets to Sea Level Rise and Storm Surge (published by SPP and available at http://www.planning.ri.gov/geodeminfo/data/slr.php) should allow local decision makers to prioritize the assets that may require an engineering analysis. Decision makers would also be advised to consult The methodology for STORMTOOL, a key source of data for this project, which is available on-line at http://www.beachsamp.org/the-science-behind-stormtools/.

Adaptation

Once the nature of the ongoing changes are understood, a policy should be developed to prepare for the changes holistically. The specific policies to be implemented will vary widely based on the community, the assets under threat, and the resources available. The policies can broadly be described as Protect, Accommodate, Retreat, and Do Nothing.

Protect: Though often popular, this is the most financially expensive option. A municipality can seek to safeguard an asset by building sea walls, or take a slightly more green approach by attempting to artificially recreate the types of dune or wetland structures that naturally stabilize a shoreline. These approaches offer short term security if well designed and implemented, but their effectiveness in the long term may be limited by further changing conditions and the resources required for maintenance.
Planning Opportunities

Once the subject of sea level rise and storm surge have been adequately researched, and an overall municipal adaptation strategy has been decided upon, decision makers should attempt to take advantage of planning opportunities that may allow the city or town to begin implementation of their planning goals. A key first step to this process will be building awareness amongst staff and constituents, either by direct outreach or simply through informal discussions.

As awareness grows, the community would be well served simply by keeping their readiness policy goals in mind when conducting their regular planning activities, such as comprehensive planning, or zoning compliance review. More concrete policies like overlay zones and rolling easements may become important tools for communities seeking a way to realize their policy goals.

Communities that are critically threatened by sea level rise and storm surge may seek to directly invest in readiness measures using municipal funds. Additional funding may be available to aid in this process from state and federal sources. Placing eligible projects for consideration in the State Transportation Improvement Plan, or other sources of Federal and State funding, is a good way to leverage local funding.

Accommodate: Accommodation can imply a number of built solutions that take into account the new conditions. An engineering oriented solution would be to elevate the assets in question above the new waterline, while another option would be to rebuild the asset in a way that suits the new conditions better, for example by rebuilding a road using a new alignment on higher ground.

Retreat: If built solutions are infeasible, a community may decide to simply abandon the asset. Private stakeholders may take over responsibility for the asset, or the need for its maintenance may diminish as users of the asset leave the area. Though undoubtedly the most efficient solution from a fiscal perspective, there are complex legal issues involved that remain unresolved.

Do Nothing: Communities may choose to take no action in response to rising sea levels. In effect this would consist of maintaining the status quo infrastructure, regardless of risk and the increasingly common inundations. In practice this approach may closely resemble retreat, as assets are incapacitated with increasing regularity until all those served by the assets move away. The financial strain of repeated maintenance could have significant fiscal effects on communities.

Warren, RI